
 ISSN: 2277-9655

[Kaur* et al., 6(4): April, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [756]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

COMPARISON OF MICRO-BATCH AND STREARMING ENGINE ON REAL

TIME DATA
Dilraj Kaur*, Dr. Raman Chadha, Nitin Verma

* Research Scholar, M.Tech(CSE),CGC Technical Campus, Jhanjeri

Professor, HOD(CSE), CGC Technical Campus, Jhanjeri

A.P(CSE), CGC Technical Campus, Jhanjeri

DOI: 10.5281/zenodo.569956

ABSTRACT
Big Data analytics has recently gained increasing popularity as a tool to process large amounts of data on-demand.

Spark and Flink are two Apache-hosted data analytics frameworks that facilitate the development of multi-step

data pipelines using directly acyclic graph patterns. Making the most out of these frameworks is challenging

because efficient executions strongly rely on complex parameter configurations and on an in-depth understanding

of the underlying architectural choices. Although extensive research has been devoted to improving and evaluating

the performance of such analytics frameworks, most of them benchmark the platforms against Hadoop, as a

baseline, a rather unfair comparison considering the fundamentally different design principles. This paper aims to

bring some justice in this respect, by directly evaluating the performance of Spark and Flink. Our goal is to identify

and explain the impact of the different architectural choices and the parameter configurations on the perceived

end-to-end performance. To compare the performance of Flink and Spark streaming using E-commerce data. Flink

and Spark are both general-purpose data processing platforms and top level projects of the Apache Software

Foundation (ASF). They have a wide field of application and are usable for dozens of big data scenarios.

INTRODUCTION
As the huge amount of data is generated every day, It creates a lots of challenges to find new ways to handle huge

data effectively those challenges are-

 Data capturing

 Data storage

 Querying and Analyzing data

In past several system were developed to processes big data. Most of them were based on MapReduce and spark

framework. There is some drawback of these framework so some new framework were developed which has

made querying and analyzing data at a large scale much more efficient than previous frameworks. These are

design for distributed processing of large data sets across clusters of computers. Apache spark and Apache Flink

both are open source platform for batch processing as well as streaming processing engine at massive scale which

provides fault-tolerance and data-distribution for distributed computations.

EXISTING SYSTEM - SPARK
Spark is an open source data processing framework, which was developed in 2009 and open sourced in 2010 as

an Apache Project. Spark is a lightning and faster cluster computing technology. Spark support “in-memory

computation” ,which becomes advantage as compared to other big data technologies like hadoop and storm. Spark

has written in Scala language. It has some code written in Java ,Python and R.Spark helps to simplify the

challenges and compute intensive task of processing high volume of real time or archived data both structured or

unstructured. Spark integrating relevant complex capabilities like Machine learning, and Graph algorithms. User

can combine all these capabilities seamlessly in single workflow.

WHAT IS SPARK STREAMING?
Spark streaming operates on the concept of micro-batches. This means that Spark Streaming should not be

considered a real-time stream processing engine. This is perhaps the single biggest difference between Spark

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(4): April, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [757]

Streaming and other platforms such as Apache Storm or Apache Flink. Spark Streaming receives live input data

streams and divides the data into batches, which are then processed by the Spark engine to generate the final

stream of results in batches.

LIMITATION OF SPARK
The biggest Limitation about running spark stream in production are back pressure, batch size, state

management and out of order data.

 Back pressure occurs when the volume of events coming across a stream is more than the stream

processing engine can handle. There are changes that will show up in version 1.5 of spark to enable more

dynamic ingestion rate capabilities to make back pressure be loss of an issue.

 Out of order data: More work is being performed to enable user - defined time extraction function. This

will enable developer to check event time against event already processed.

 Batch Size: Spark streaming needs batch size to be defined before any stream processing. It’s because

spark streaming follows micro batches for stream processing which is also known as near realtime .

 State Management: In spark, after each batch, the state has to be updated explicitly if you want to keep

track of word count across batches.

NEW SYSTEM - FLINK
Apache Flink is a true stream processing tool. Flink’s core is a streaming dataflow engine which also provides

distributed processing, fault tolerance, etc. Flink is a top level project of Apache. Flink is a scalable data analytics

framework that is fully compatible to Hadoop. Flink can execute both stream processing and batch processing

easily. Flink is an alternative of Mapreduce and Spark framework. Its 100 times faster than other framework. Flink

is not dependent of hadoop but it uses hdfs to read and write data. Flink does not provide its own data storage

system.it takes data from distributed storage.

WHAT IS FLINKSTREAMING?
Flink Streaming uses the pipelined Flink engine to process data streams in real time and offers a new API including

definition of flexible windows.

Advantages of Flink Streaming
Apache flink reduces the complexity that has been faced by other distributed data driven engines. it is achieved

by integrating query optimization, concepts from database systems and efficient parallel in-memory andout-of-

core algorithms, with the MapReduce framework.

 No need to Batch Size in Flink :Spark streaming needs batch size to be defined before any stream

processing. It’s because spark streaming follows micro batches for stream processing which is also

known as near real-time . But flink follows one message at a time way where each message is processed

as and when it arrives. So flink does not need any batch size to be specified.

 State Management: In spark, after each batch, the state has to be updated explicitly if you want to keep

track of word count across batches. But in flink the state is up-to-dated as and when new records arrive

implicitly.

 Support for Event Time and Out-Of-Order Events :Flink supports stream processing and windowing

with Event Time semantics.

o Event time makes it easy to compute over streams where events arrive out of order, and where

events may arrive delayed.

COMPARISON

Features Apache Flink Apache Spark

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(4): April, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [758]

Computation Model
Flink is based on operator-based computational

model.
Spark is based on micro-batch modal.

Streaming engine

Apache Flink uses streams for all workloads:

streaming, SQL, micro-batch and batch. Batch is a

finite set of streamed data.

Spark uses micro-batches for all workloads.

But it is not sufficient for use cases where we

need to process large streams of live data and

provide results in real time

Iterative processing
Flink API provides two dedicated iterations

operation Iterate and Delta Iterate.

Spark is based on non-native iteration which

is implemented as regular for – loops

outside the system.

Optimization
Apache Flink comes with an optimizer that is

independent with actual programming interface.

In Apache Spark jobs has to be manually

optimized.

Latency

With minimum efforts in configuration Apache

Flink’s data streaming run-time achieves low

latency and high throughput.

Apache Spark has high latency as compared to

Apache Flink.

Performance

Overall performance of Apache Flink is excellent

as compared to any other data processing system.

Apache Flink uses native closed loop iterations

operators which makes machine learning and

graph processing more faster.

Though Apache Spark has an excellent

community background and now It is

considered as most matured community. But

Its stream processing is not much efficient

than Apache Flink as it uses micro-batch

processing.

Fault tolerance

The fault tolerance mechanism followed by

Apache Flink is based on Chandy-Lamport

distributed snapshots. The mechanism is

lightweight, which results in maintaining high

throughput rates and provide strong consistency

guarantees at the same time.

Spark Streaming recovers lost work and

delivers exactly-once semantics out of the box

with no extra code or configuration.

Duplicate elimination
Apache Flink process every records exactly one

time hence eliminates duplication.

Spark also process every records exactly one

time hence eliminates duplication.

Window Criteria
Flink has a record-based or any custom user-

defined Window criteria.
Spark has a time-based Window criteria

Memory -Management Flink provides automatic memory management.

Spark provides configurable memory

management. Spark 1.6, Spark has moved

towards automating memory management as

well.

INFRASTRUCTURE STATISTICS
 Number of nodes in the cluster: 1 Node

 Node Configuration: Dual-core Processor, 4 GB RAM

 spark-2.0.0-bin-hadoop2.7

 flink-1.2.0-bin-hadoop26-scala_2.10

Data Statistics

 Data is in the form of JSON.

 Each record have fixed number of fields.

 Average record size is 3000 Bytes

Performance of Flink Streaming Vs Spark streaming

Query \ No Of Record-> 1000 5000 10000 50000 100000 500000

Monthly distribution of reviews Flink-125

Spark-51

Flink-134

Spark-63

Flink-

142

Spark-54

Flink-178

Spark-57

Flink-

207

Spark-48

Flink-244

Spark-132

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(4): April, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [759]

Monthly average ratings of new

amazon reviews

Flink-103

Spark-63

Flink-110

Spark-74

Flink-

116

Spark-80

Flink-123

Spark-61

Flink-

188

Spark-53

Flink-193

Spark-56

Product with highest no of

reviews

Flink-274

Spark-45

Flink-365

Spark-50

Flink-

398

Spark-61

Flink-428

Spark-46

Flink-

582

Spark-44

Flink-543

Spark-68

Distribution of rating of products

(rating from 1-2, 2-3, 3-4, 4-5)

Flink-75

Spark-60

Flink-86

Spark-48

Flink-94

Spark-53

Flink-96

Spark-65

Flink-

104

Spark-

100

Flink-85

Spark-69

Distribution of helpfulness of

reviews (% of helpfulness)

Flink-134

Spark-45

Flink-232

Spark-50

Flink-

184

Spark-61

Flink-526

Spark-46

Flink-

610

Spark-44

Flink-543

Spark-68

Fig 1: Monthly distribution of reviews on Amazon Data

Fig 2: Monthly average ratings of new Amazon reviews

0

50

100

150

200

250

300

1000 5000 10000 50000 100000 500000

Flink

Spark

0

100

200

300

400

500

600

700

1000 5000 10000 50000 100000 500000

Flink

Spark

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(4): April, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [760]

Fig 3: Product with highest no of reviews

Fig 4: Distribution of rating of products (rating from 1-2, 2-3, 3-4, 4-5)

Fig 5: Distribution of helpfulness of reviews (% of helpfulness)

CONCLUSION
Apache Spark and Flink both are next generation Big Data tool grabbing industry attention. Both provide native

connectivity with Hadoop and NoSQL Databases and can process hdfs data. Both are nice solution to several Big

Data problems. But Flink is faster then Spark, due to its underlying architecture. Apache Spark is most active

0

100

200

300

400

500

600

700

1000 5000 10000 50000 100000 500000

Flink

Spark

0

20

40

60

80

100

120

1000 5000 10000 50000 100000 500000

Flink

Spark

0

100

200

300

400

500

600

700

1000 5000 10000 50000 100000 500000

Flink

Spark

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(4): April, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [761]

component in Apache repository. Spark has very strong community support and has good number of contributors.

Spark has already been deployed in the production. in our experiment we use amazon data ,average time to process

data with flink is 240.3sec and spark is 60.4sec and the performance of spark is 179.5% better than over flink.

REFERENCES
[1] Tom White, "Hadoop Definitive Guide”. O’Reilly

[2] Asterios Katsifodimos(2016) et. al. “Apache Flink: Stream Analytics at Scale”

[3] Altti Ilari Maarala (2015)“Low latency analytics for streaming traffic data with Apache Spark” IEEE

International Conference.

[4] Kuo M.H., Sahama T., Kushniruk A.W., Borycki E.M., Grunwell D. Health Big Data Analytics: Current

Perspectives, Challenges and Potential Solutions. Int J Big Data Intelligence 2014; 1(12): 114–126.

[5] Sun J., Reddy C.K. Big Data Analytics for Healthcare. Tutorial presentation at the SIAM International

Conference on Data Mining, Austin, TX, 2013.

[6] Nelson, R., Staggers, N. Health Informatics: an interprofessional approach. Mosby, an imprint of Elsevier

Inc.; 2014. Saint Louis, MO.

[7] Moselle, K. Data Management in the Island Health Secure Research Environment. Enterprise

Architecture at Vancouver Island Health Authority. Working Draft 5; 2015. Victoria, BC.

[8] Hadoopproject. http://hadoop.apache.org/.

[9] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wycko, and R. Murthy.,

“Hive A Warehousing Solution Over a MapReduce Framework.” VLDB, 2009.

[10] R. Stewart. Performance and Programmability of High Level Data Parallel Processing Languages: Pig,

Hive, JAQL & JavaMapReduce, 2010. Heriot-Watt University.

[11] Y. Jia and Z. Shao. A Benchmark for Hive, PIG and Hadoop,2009

https://issues.apache.org/jira/browse/HIVE

[12] Rasim Alguliyev and Yadigar Imamverdiyev. Big data: Big promises for information security.In

Application of Information and Communication Technologies (AICT), 2014 IEEE 8th Interntional

Conference on, pages IEEE, 2014

[13] Apachehadoop en.wikipedia.org/wiki/apache hadoop.

[14] Sam Madden. From databases to big data. IEEE Internet Computing, 16(3):4{6, 2012.

[15] https://www.quora.com/What-are-the-differences-between-batch-processing-and-stream-processing-

systems.

CITE A JOURNAL:

Kaur, D., Chadha, R., & Verma, N. (2017). COMPARISON OF MICRO-BATCH AND

STREARMING ENGINE ON REAL TIME DATA. INTERNATIONAL JOURNAL OF

ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 6(4), 756-761.

doi:10.5281/zenodo.569956

http://www.ijesrt.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Asterios%20Katsifodimos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Altti%20Ilari%20Maarala.QT.&newsearch=true
http://hadoop.apache.org/
https://issues.apache.org/jira/browse/HIVE

